2N5210 ## **NPN General Purpose Amplifier** This device is designed for low noise, high gain, general purpose amplifier applications at collector currents from 1µA to 50 mA. Sourced from Process 07. See 2N5088 for characteristics. ## **Absolute Maximum Ratings*** TA = 25°C unless otherwise noted | Symbol | Parameter | Value | Units | |-----------------------------------|--|-------------|-------| | V_{CEO} | Collector-Emitter Voltage | 50 | V | | V_{CBO} | Collector-Base Voltage | 50 | V | | V_{EBO} | Emitter-Base Voltage | 4.5 | V | | Ic | Collector Current - Continuous | 100 | mA | | T _J , T _{stg} | Operating and Storage Junction Temperature Range | -55 to +150 | °C | ^{*}These ratings are limiting values above which the serviceability of any semiconductor device may be impaired. NOTES: 1) These ratings are based on a maximum junction temperature of 150 degrees C. ### **Thermal Characteristics** TA = 25°C unless otherwise noted | Symbol | I Characteristic Max | | Units | | |------------------|--|------------|-------------|--| | | | 2N5210 | | | | P_D | Total Device Dissipation Derate above 25°C | 625
5.0 | mW
mW/°C | | | R _{θJC} | Thermal Resistance, Junction to Case | 83.3 | °C/W | | | $R_{\theta JA}$ | Thermal Resistance, Junction to Ambient | 200 | °C/W | | ²⁾ These are steady state limits. The factory should be consulted on applications involving pulsed or low duty cycle operations. # NPN General Purpose Amplifier (continued) | Electrical Characteristics | | TA = 25°C unless otherwise noted | | | |----------------------------|--|----------------------------------|--|--| | | | | | | | Symbol | Parameter | Test Conditions | Min | Max | Units | |----------------------|---|--|------------|------|-------| | | | | | | | | OFF CHA | RACTERISTICS | | | | | | $V_{(BR)CEO}$ | Collector-Emitter Breakdown Voltage | $I_C = 1.0 \text{ mA}, I_B = 0$ | 50 | | V | | $V_{(BR)CBO}$ | Collector-Base Breakdown Voltage | $I_C = 0.1 \text{ mA}, I_E = 0$ | 50 | | V | | I _{CBO} | Collector Cutoff Current | $V_{CB} = 35 \text{ V}, I_{E} = 0$ | | 50 | nA | | I _{EBO} | Emitter Cutoff Current | $V_{EB} = 3.0 \text{ V}, I_{C} = 0$ | | 50 | nA | | | RACTERISTICS DC Current Gain | T. 400 A.V. 50V | 000 | 600 | | | | | T | 000 | 000 | | | h _{FE} | Do Current Gain | $I_C = 100 \mu\text{A}, V_{CE} = 5.0 \text{V}$
$I_C = 1.0 \text{mA}, V_{CE} = 5.0 \text{V}$ | 200
250 | 000 | | | | | $I_C = 10 \text{ mA}, V_{CE} = 5.0 \text{ V}^*$ | 250 | | | | V _{CE(sat)} | Collector-Emitter Saturation Voltage | $I_C = 10 \text{ mA}, I_B = 1.0 \text{ mA}$ | | 0.7 | V | | V _{BE(on)} | Base-Emitter On Voltage | $I_C = 1.0 \text{ mA}, V_{CE} = 5.0 \text{ V}$ | | 0.85 | V | | SMALL S | IGNAL CHARACTERISTICS Current Gain - Bandwidth Product | $I_{C} = 500 \mu\text{A}, V_{CE} = 5.0 \text{V},$ $f = 20 \text{MHz}$ | 30 | | MHz | | C _{cb} | Collector-Base Capacitance | $V_{CB} = 5.0 \text{ V}, I_E = 0, f = 100 \text{ kHz}$ | | 4.0 | pF | | h _{fe} | Small-Signal Current Gain | $I_C = 1.0 \text{ mA}, V_{CE} = 5.0 \text{ V},$
f = 1.0 kHz | 250 | 900 | | | NF | Noise Figure | $I_C = 20 \mu A$, $V_{CE} = 5.0 V$, $R_S = 22 k\Omega$, $f = 10 Hz$ to 15.7 kHz | | 2.0 | dB | | | | $I_C = 20 \mu A$, $V_{CE} = 5.0 V$,
$R_S = 10 kΩ$, $f = 1.0 kHz$ | | 3.0 | dB | ^{*}Pulse Test: Pulse Width \leq 300 $\mu s, \, \text{Duty Cycle} \leq 2.0\%$