

2N5210

NPN General Purpose Amplifier

This device is designed for low noise, high gain, general purpose amplifier applications at collector currents from 1µA to 50 mA. Sourced from Process 07. See 2N5088 for characteristics.

Absolute Maximum Ratings*

TA = 25°C unless otherwise noted

Symbol	Parameter	Value	Units
V_{CEO}	Collector-Emitter Voltage	50	V
V_{CBO}	Collector-Base Voltage	50	V
V_{EBO}	Emitter-Base Voltage	4.5	V
Ic	Collector Current - Continuous	100	mA
T _J , T _{stg}	Operating and Storage Junction Temperature Range	-55 to +150	°C

^{*}These ratings are limiting values above which the serviceability of any semiconductor device may be impaired.

NOTES:

1) These ratings are based on a maximum junction temperature of 150 degrees C.

Thermal Characteristics

TA = 25°C unless otherwise noted

Symbol	I Characteristic Max		Units	
		2N5210		
P_D	Total Device Dissipation Derate above 25°C	625 5.0	mW mW/°C	
R _{θJC}	Thermal Resistance, Junction to Case	83.3	°C/W	
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient	200	°C/W	

²⁾ These are steady state limits. The factory should be consulted on applications involving pulsed or low duty cycle operations.

NPN General Purpose Amplifier (continued)

Electrical Characteristics		TA = 25°C unless otherwise noted		

Symbol	Parameter	Test Conditions	Min	Max	Units
OFF CHA	RACTERISTICS				
$V_{(BR)CEO}$	Collector-Emitter Breakdown Voltage	$I_C = 1.0 \text{ mA}, I_B = 0$	50		V
$V_{(BR)CBO}$	Collector-Base Breakdown Voltage	$I_C = 0.1 \text{ mA}, I_E = 0$	50		V
I _{CBO}	Collector Cutoff Current	$V_{CB} = 35 \text{ V}, I_{E} = 0$		50	nA
I _{EBO}	Emitter Cutoff Current	$V_{EB} = 3.0 \text{ V}, I_{C} = 0$		50	nA
	RACTERISTICS DC Current Gain	T. 400 A.V. 50V	000	600	
		T	000	000	
h _{FE}	Do Current Gain	$I_C = 100 \mu\text{A}, V_{CE} = 5.0 \text{V}$ $I_C = 1.0 \text{mA}, V_{CE} = 5.0 \text{V}$	200 250	000	
		$I_C = 10 \text{ mA}, V_{CE} = 5.0 \text{ V}^*$	250		
V _{CE(sat)}	Collector-Emitter Saturation Voltage	$I_C = 10 \text{ mA}, I_B = 1.0 \text{ mA}$		0.7	V
V _{BE(on)}	Base-Emitter On Voltage	$I_C = 1.0 \text{ mA}, V_{CE} = 5.0 \text{ V}$		0.85	V
SMALL S	IGNAL CHARACTERISTICS Current Gain - Bandwidth Product	$I_{C} = 500 \mu\text{A}, V_{CE} = 5.0 \text{V},$ $f = 20 \text{MHz}$	30		MHz
C _{cb}	Collector-Base Capacitance	$V_{CB} = 5.0 \text{ V}, I_E = 0, f = 100 \text{ kHz}$		4.0	pF
h _{fe}	Small-Signal Current Gain	$I_C = 1.0 \text{ mA}, V_{CE} = 5.0 \text{ V},$ f = 1.0 kHz	250	900	
NF	Noise Figure	$I_C = 20 \mu A$, $V_{CE} = 5.0 V$, $R_S = 22 k\Omega$, $f = 10 Hz$ to 15.7 kHz		2.0	dB
		$I_C = 20 \mu A$, $V_{CE} = 5.0 V$, $R_S = 10 kΩ$, $f = 1.0 kHz$		3.0	dB

^{*}Pulse Test: Pulse Width \leq 300 $\mu s, \, \text{Duty Cycle} \leq 2.0\%$