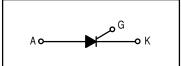
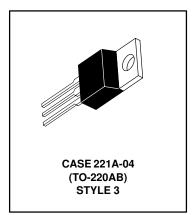
Silicon Controlled Rectifiers


Reverse Blocking Triode Thyristors


... designed primarily for full-wave ac control applications, such as motor controls, heating controls and power supplies; or wherever half-wave silicon gate-controlled, solid-state devices are needed.

- Glass Passivated Junctions and Center Gate Fire for Greater Parameter Uniformity and Stability
- Small, Rugged, Thermowatt Construction for Low Thermal Resistance, High Heat Dissipation and Durability
- Blocking Voltage to 800 Volts
- Different Leadform Configurations,
 Suffix (2) thru (6) available, see Leadform Options (Section 4) for Information

C122()1 Series

SCRs 8 AMPERES RMS 50 thru 800 VOLTS

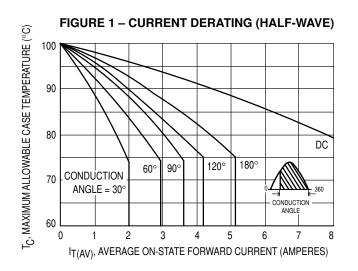
MAXIMUM RATINGS (T_{.J} = 25°C unless otherwise noted.)

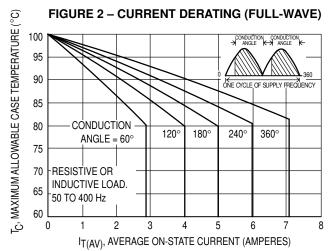
Rating		Symbol	Value	Unit
Repetitive Peak Off-State Voltage ⁽¹⁾ (T _J = 25 Repetitive Peak Reverse Voltage	to 100°C, Gate Open) C122F1 C122A1 C122B1 C122D1 C122M1 C122N1	VDRM VRRM	50 100 200 400 600 800	Volts
Peak Non-repetitive Reverse Voltage(1)	C122F1 C122A1 C122B1 C122D1 C122M1 C122N1	VRSM	75 200 300 500 700 800	Volts
Forward Current RMS (All Conduction Angles)	T _C ≤ 75°C	I _{T(RMS)}	8	Amps
Peak Forward Surge Current (1/2 Cycle, Sine Wave, 60 Hz)		^I TSM	90	Amps
Circuit Fusing Considerations (t = 8.3 ms)		l ² t	34	A ² s

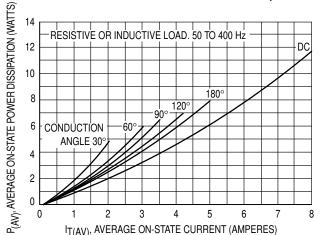
^{1.} VDRM and VRRM for all types can be applied on a continuous basis. Ratings apply for zero or negative gate voltage; however, positive gate voltage shall not be applied concurrent with negative potential on the anode. Blocking voltages shall not be tested with a constant current source such that the voltage ratings of the devices are exceeded.

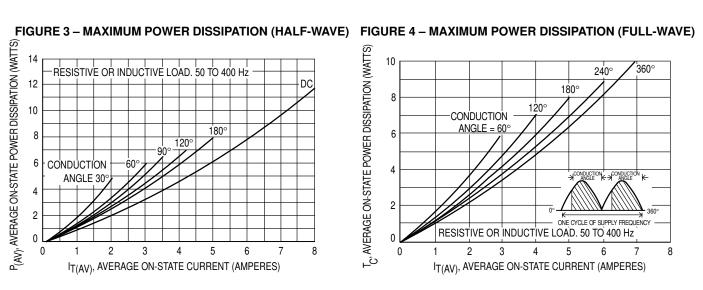
MAXIMUM RATINGS — continued

Rating	Symbol	Value	Unit	
Forward Peak Gate Power (t = 10 μs)	P _{GM}	5	Watts	
Forward Average Gate Power	PG(AV)	0.5	Watt	
Forward Peak Gate Current	IGМ	2	Amps	
Operating Junction Temperature Range	TJ	-40 to +100	°C	
Storage Temperature Range	T _{stg}	-40 to +125	°C	


THERMAL CHARACTERISTICS


Characteristic	Symbol	Max	Unit	
Thermal Resistance, Junction to Case	$R_{ heta JC}$	1.8	°C/W	


$\textbf{ELECTRICAL CHARACTERISTICS} \ (T_C = 25^{\circ}\text{C unless otherwise noted.})$


Characteristic	Symbol	Min	Тур	Max	Unit
Peak Forward or Reverse Blocking Current (V_{AK} = Rated V_{DRM} or V_{RRM} , Gate Open) T_{C} = 25°C T_{C} = 100°C	I _{DRM} , I _{RRM}	_	_	10 0.5	μA mA
Peak On-State Voltage(1) $(I_{TM} = 16 \text{ A Peak}, T_C = 25^{\circ}\text{C})$	V _{TM}	_	_	1.83	Volts
Gate Trigger Current (Continuous dc) ($V_D = 6 \text{ V}$, $R_L = 91 \text{ Ohms}$, $T_C = 25^{\circ}\text{C}$) ($V_D = 6 \text{ V}$, $R_L = 45 \text{ Ohms}$, $T_C = -40^{\circ}\text{C}$)	^I GT	_ _	_ _	25 40	mA
Gate Trigger Voltage (Continuous dc) $ \begin{array}{l} (V_D=6~V,~R_L=91~Ohms,~T_C=25^{\circ}C)\\ (V_D=6~V,~R_L=45~Ohms,~T_C=-40^{\circ}C)\\ (V_D=Rated~V_{DRM},~R_L=1000~Ohms,~T_C=100^{\circ}C) \end{array} $	Vgт	— — 0.2	_ _ _	1.5 2 —	Volts
Holding Current (V_D = 24 Vdc, I_T = 0.5 A, 0.1 to 10 ms Pulse, Gate Trigger Source = 7 V, 20 Ohms) T_C = 25°C T_C = -40°C	ΙΗ		_	30 60	mA
Turn-Off Time (V_D = Rated V_{DRM}) (I_{TM} = 8 A, I_R = 8 A)	^t q	_	50	_	μѕ
Critical Rate-of-Rise of Off-State Voltage $(V_D = Rated\ V_{DRM},\ Linear,\ T_C = 100^{\circ}C)$	dv/dt	_	50	_	V/μs

^{1.} Pulse Test: Pulse Width = 1 ms, Duty Cycle \leq 2%.

